

Welcome to the maxsmooth documentation!

Contents:

	Introduction
	Introduction

	maxsmooth Theory and Algorithm
	Well Defined Problems and Discrete Sign Space Searches

	The \({\chi^2}\) Distribution

	The maxsmooth Sign Navigating Algorithm

	Ill Defined Problems and their Identification

	maxsmooth Example Codes
	Simple Example code

	Turning Points and Inflection Points

	New Basis Example

	Best Basis Example

	\({\chi^2}\) Distribution Example

	Parameter Plotter Example

	maxsmooth Functions
	smooth()

	best_basis()

	chidist_plotter()

	parameter_plotter()

	Change Log
	Unrealeased

	Version 1.1.0

	Version 1.2.0

maxsmooth: Derivative Constrained Function Fitting

Introduction

	maxsmooth

	Derivative Constrained Function Fitting

	Author

	Harry Thomas Jones Bevins

	Version

	1.2.0

	Homepage

	https://github.com/htjb/maxsmooth

	Documentation

	https://maxsmooth.readthedocs.io/

[image: travis-ci]
 [https://travis-ci.com/htjb/maxsmooth][image: circleci]
 [https://circleci.com/gh/htjb/maxsmooth][image: Test Coverage Status]
 [https://codecov.io/gh/htjb/maxsmooth][image: Documentation Status]
 [https://maxsmooth.readthedocs.io/en/latest/?badge=latest][image: License information]
 [https://github.com/htjb/maxsmooth/blob/master/LICENSE][image: Latest PyPI version]
 [https://pypi.org/project/maxsmooth/#description][image: Number of PyPI downloads][image: Astrophysics Source Code Library]
 [http://ascl.net/2008.018][image: JOSS paper]
 [https://joss.theoj.org/papers/7f53a67e2a3e8f021d4324de96fb59c8][image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/htjb/maxsmooth/master?filepath=example_notebooks%2F]
Installation

In the following two sections we highlight the purpose of maxsmooth and
show an example. To install the software follow these instructions:

The software can be pip installed from the PYPI repository like so,

pip install maxsmooth

or alternatively it can be installed from the git repository via,

git clone https://github.com/htjb/maxsmooth.git
cd maxsmooth
python setup.py install --user

Derivative Constrained Functions and maxsmooth

maxsmooth is an open source software, written in Python (supporting version 3 upwards),
for fitting derivative constrained
functions (DCFs) such as Maximally Smooth Functions
(MSFs) to data sets. MSFs are functions for which there are no zero
crossings in derivatives of order m >= 2 within the domain of interest.
More generally for DCFs the minimum
constrained derivative order, m can take on any value or a set of
specific high order derivatives can be constrained.
They are designed to prevent the loss of
signals when fitting out dominant smooth foregrounds or large magnitude signals that
mask signals of interest. Here “smooth” means that the foregrounds follow power
law structures in the band of interest.
In some cases DCFs can be used to
highlight systematics in the data.

maxsmooth uses quadratic programming implemented with CVXOPT to fit
data subject to a fixed linear constraint, Ga <= 0, where the product
Ga is a matrix of derivatives.
The constraint on an MSF are not explicitly
linear and each constrained derivative can be positive or negative.
maxsmooth is, however, designed to test the <= 0 constraint multiplied
by a positive or negative sign. Where a positive sign in front of the mth
order derivative forces the derivative
to be negative for all x. For an Nth order polynomial maxsmooth can test
every available sign combination but by default it implements a sign navigating algorithm.
This is detailed in the maxsmooth paper (see citation), is summarized
below and in the software documentation.

The available sign combinations act as discrete parameter spaces all with
global minima and maxsmooth is capable of finding the minimum of these global
minima by implementing a cascading algorithm which is followed by a directional
exploration. The cascading routine typically finds an approximate to the global
minimum and then the directional exploration is a complete search
of the sign combinations in the neighbourhood
of that minimum. The searched region is limited by factors
that encapsulate enough of the neighbourhood to confidently return the global minimum.

The sign navigating method is reliant on the problem being “well defined” but this
is not always the case and it is in these instances it is possible to run the code testing
every available sign combination on the constrained derivatives. For a definition of
a “well defined” problem and it’s counter part see the maxsmooth paper and the
documentation.

maxsmooth features a built in library of DCFs or
allows the user to define their own. The addition of possible inflection points
and zero crossings in higher order derivatives is also available to the user.
The software has been designed with these two
applications in mind and is a simple interface.

Example Fit

Shown below is an example MSF fit performed with maxsmooth to data that
follows a y = x-2.5 power law with a randomly generated Gaussian
noise with a standard deviation 0.02. The top panel shows the data and the
bottom panel shows the residual
after subtraction of the MSF fit alongside the actual noise in the data.
The software using the default built-in DCF model is shown to be
capable of recovering the random noise.

[image: _images/README.png]
Further examples can be found in the Documentation (https://maxsmooth.readthedocs.io/)
and in the github repository in the files ‘example_codes/’ and
‘example_notebooks/’ (notebooks can also be accessed online
here [https://mybinder.org/v2/gh/htjb/maxsmooth/master?filepath=example_notebooks%2F]).

Licence and Citation

The software is free to use on the MIT open source license. However if you use
the software for academic purposes we request that you cite the maxsmooth
papers. They are detailed below.

MNRAS pre-print (referred to throughout the documentation as the maxsmooth
paper),

H. T. J. Bevins et al., maxsmooth: Rapid maximally smooth function fitting with
applications in Global 21-cm cosmology [https://arxiv.org/abs/2007.14970],
arXiv e-print, arXiv:2007.14970, 2020.

Below is the BibTex citation,

@ARTICLE{maxsmooth,
 author = {{Bevins}, H.~T.~J. and {Handley}, W.~J. and {Fialkov}, A. and
 {de Lera Acedo}, E. and {Greenhill}, L.~J. and {Price}, D.~C.},
 title = "{maxsmooth: Rapid maximally smooth function fitting with applications in Global 21-cm cosmology}",
 journal = {arXiv e-prints},
 year = 2020,
 month = jul,
 eid = {arXiv:2007.14970},
 pages = {arXiv:2007.14970},
archivePrefix = {arXiv},
 eprint = {2007.14970},
primaryClass = {astro-ph.CO},
 adsurl = {https://ui.adsabs.harvard.edu/abs/2020arXiv200714970B},
 adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

JOSS paper currently under review
here [https://github.com/openjournals/joss-reviews/issues/2596].

Contributing

Contributions to maxsmooth are welcome and can be made via:

	Opening an issue to purpose new features/report bugs.

	Making a pull request. Please consider opening an issue to discuss
any proposals beforehand and ensure that your PR will be accepted.

An example contribution may be the addition of a basis function into the
standard library.

Documentation

The documentation is available at: https://maxsmooth.readthedocs.io/

Alternatively, it can be compiled locally from the git repository and requires
sphinx [https://pypi.org/project/Sphinx/] to be installed.
You can do this via:

cd docs/
make SOURCEDIR=source html

or

cd docs/
make SOURCEDIR=source latexpdf

The resultant docs can be found in the docs/_build/html/ and docs/_build/latex/
respectively.

Requirements

To run the code you will need the following additional packages:

	matplotlib [https://pypi.org/project/matplotlib/]

	numpy [https://pypi.org/project/numpy/]

	CVXOPT [https://pypi.org/project/cvxopt/]

	scipy [https://pypi.org/project/scipy/]

	progressbar [https://pypi.org/project/progressbar/]

When installing via pip or from source using the setup.py file
the above packages will also be installed if absent.

To compile the documentation locally you will need:

	sphinx [https://pypi.org/project/Sphinx/]

	numpydoc [https://pypi.org/project/numpydoc/]

To run the test suit you will need:

	pytest [https://pypi.org/project/pytest/]

Basin-hopping/Nelder-Mead Code

In the maxsmooth MNRAS paper and JOSS paper we provide a comparison of
maxsmooth to a Basin-hopping/Nelder-Mead approach for fitting DCFs. For
completeness we provide in this repo the code used to make this comparison
in the file ‘Basin-hopping_Nelder_Mead/’.

The code times_chis.py is used to call maxsmooth and the Basin-hopping
methods (in the file ‘BHNM/’). It will plot the recorded times and objective
function evaluations.

The Basin-hopping/Nelder-Mead code is designed to fit MSFs and is not
generalised to all types of DCF. It is also not documented, however there are
minor comments in the script and it should be self explanatory. Questions
on this are welcome and can be posted as an issue or by contacting the author.

maxsmooth Theory and Algorithm

This section has been adapted from section 4 of the maxsmooth paper
in order to explain how the algorithm works. What follows is a discussion of
the fitting problem and the
maxsmooth algorithm. To state concisely the problem being fitted we have

\[\begin{split}&\min_{a,~s}~~\frac{1}{2}~\mathbf{a}^T~\mathbf{Q}~\mathbf{a}~+~\mathbf{q}^T~\mathbf{a}, \\
&\mathrm{s.t.}~~\mathbf{G(s)~a} \leq \mathbf{0}.\end{split}\]

where \({\mathbf{s}}\) are the maxsmooth signs corresponding to the
signs on the derivatives. \({\mathbf{G}}\) is a matrix of prefactors on the derivatives,
\({\mathbf{a}}\) are the parameters we are optimising for and their
product gives the derivatives we are constraining with each fit.
\({\mathbf{Q}}\) is the dot product of the matrix of basis functions and
its transpose and \(\mathbf{q}\) is the negative of the transposed data,
\(\mathbf{y}\) dotted with the basis functions. For more details on this
equation see the maxsmooth paper.
A `problem’ in this context is the combination of the data, order, basis
function and constraints on the DCF.

With maxsmooth we can test all possible sign combinations on the constrained derivatives.
This is a
reliable method and, provided the problem can be solved with quadratic programming,
will always give the correct global minimum. When the problem we are interested
in is “well defined”, we can develop a quicker algorithm that searches or navigates
through the discrete maxsmooth sign spaces to find the global minimum.
Each sign space is a discrete parameter space with its own global minimum.
Using quadratic programming on a fit with a specific sign combination will
find this global minimum, and we are interested in finding the minimum
of these global minima.

A “well defined” problem is one in which the discrete sign spaces have large
variance in their minimum \({\chi^2}\) values and the sign space for the
global minimum is easily identifiable. In contrast we can have an “ill defined”
problem in which the variance in minimum \({\chi^2}\) across all sign
combinations is small. This concept of “well defined” and “ill defined” problems
is explored further in the following two sections.

Well Defined Problems and Discrete Sign Space Searches

The \({\chi^2}\) Distribution

We investigate the distribution of \({\chi^2}\) values, shown in the figure below,
for a 10 \({^{th}}\) order y-log(x) space MSF fit to a \({y = x^{-2.5}}\)
power law plus gaussian noise.

In the figure, a combination of all positive derivatives~(negative signs) and
all negative derivatives~(positive signs) corresponds to sign combination numbers
255 and 0 respectively. Specifically, the maxsmooth signs, \({\mathbf{s}}\),
are related to the sign combination number by its \({C}\) bit binary representation,
here \({C = (N -2)}\). In binary the sign combination numbers run from
00000000 to 11111111. Each bit represents the sign on the \({m^{th}}\)
order derivative with a 1 representing a negative maxsmooth sign.

[image: _images/chi_dist_theory.png]
The distribution appears to be composed of smooth steps or shelves; however,
when each shelf is studied closer, we find a series of peaks and troughs. This can
be seen in the subplot of the above figure which shows the distribution in the
neighbourhood of the global minimum found in the large or global’ well. This type
of distribution with a large variance in :math:`{chi^2} is characteristic of a “well defined”
problem. We use this example \({\chi^2}\) distribution to motivate the maxsmooth
algorithm outlined in the following section.

The maxsmooth Sign Navigating Algorithm

Exploration of the discrete sign spaces for high \({N}\) can be achieved by
exploring the spaces around an iteratively updated optimum sign combination.
The maxsmooth algorithm begins with a randomly generated set of signs for
which the objective function is evaluated and the optimum parameters are found.
We flip each individual sign one at a time beginning with the lowest order
constrained derivative first. When the objective function is evaluated to be lower
than that for the optimum sign combination, we replace it with the new set and repeat
the process in a `cascading’ routine until the objective function stops decreasing in value.

The local minima shown in the \({\chi^2}\) distribution above mean that the
cascading algorithm is not sufficient to consistently find the global minimum.
We can demonstrate this by performing 100 separate runs of the cascading
algorithm on \({y = x^{-2.5} + \mathrm{noise}}\), and we use a y-log(x) space
\({10^{th}}\) order MSF again. We find the true global minimum 79
times and a second local minimum 21 times.

To prevent the routine terminating in a local minimum we perform a complete search
of the sign spaces surrounding the minimum found after the cascading routine.
We refer to this search as a directional exploration and impose limits on its
extent. In each direction we limit the number of sign combinations to explore and
we limit the maximum allowed increase in \({\chi^2}\) value. These limits can
be modified by the user. We prevent repeated calculations of the minimum for given
signs and treat the minimum of all tested signs as the global minimum.

We run the consistency test again, with the full maxsmooth algorithm, and find
that for all 100 trial fits we find the same \({\chi^2}\) found when testing
all sign combinations. In the figure below, the red arrows show the approximate path
taken through the discrete sign spaces against the complete distribution of \({\chi^2}\).
Point (1a) shows the random starting point in the algorithm, and point (1b) shows a rejected sign
combination evaluated during the cascade from point (1a) to (2). Point (2), therefore,
corresponds to a step through the cascade. Point (3) marks the end of the cascade
and the start of the left directional exploration. Finally, point (4) shows the end
of the right directional exploration where the calculated \({\chi^2}\)
value exceeds the limit on the directional exploration.

[image: _images/routine.png]
The global well tends to be associated with signs that are all positive,
all negative or alternating. We see this in the figure above where the minimum falls
at sign combination number 169 and number 170, characteristic of the derivatives for
a \({x^{-2.5}}\) power law, corresponds to alternating positive and negative
derivatives from order \({m = 2}\). Standard patterns of derivative signs can be seen
for all data following approximate power laws. All positive derivatives, all negative
and alternating signs correspond to data following the approximate power laws
\({y\approx x^{k}}\), \({y\approx -x^{k}}\), \({y\approx x^{-k}}\) and
\({y\approx -x^{-k}}\).

The maxsmooth algorithm assumes that the global well is present in the \({\chi^2}\)
distribution and this is often the case. The use of DCFs is primarily driven by a
desire to constrain previously proposed polynomial models to foregrounds. As a result
we would expect that the data being fitted could be described by one of the four
approximate power laws highlighted above and that the global minimum will fall
around an associated sign combination. In rare cases the global well is not clearly
defined and this is described in the following subsection.

Ill Defined Problems and their Identification

We can illustrate an “ill defined” problem, with a small variation in
\({\chi^2}\) across the maxsmooth sign spaces, by adding a non-smooth signal
of interest into the foreground model, \({x^{-2.5}}\) and fitting this with
a 10 \({^{th}}\) order log(y)-log(x) space MSF. We add an additional noise of
\({0.020}\) to the mock data. The resultant \({\chi^2}\) distribution with its
global minimum is shown in the top panel of the figure below.

The global minimum, shown as a black data point, cannot be found using the
maxsmooth algorithm. The cascading algorithm may terminate in any of the
approximately equal minima and the directional exploration will then quickly
terminate because of the limits imposed.

[image: _images/combined_chi.png]
If we repeat the above fit and perform it with a y-x space MSF we find that the
problem is well defined with a larger \({\chi^2}\) variation across sign
combinations. This is shown in the bottom panel of the above figure. The results,
when using the log(y)-log(x) space MSF, are significantly better than when using
y-x space MSF meaning it is important to be able to solve “ill defined” problems.
This can be done by testing all maxsmooth signs but knowing when this is
necessary is important if you are expecting to run multiple DCF fits to the
same data set. We can focus on diagnosing whether a DCF fit to the data is
“ill defined” because a joint fit to the same data set of a DCF and signal
of interest will also feature an “ill defined” \({\chi^2}\) distribution.

We can identify an “ill defined” problem by producing the equivalent of
the above figure using maxsmooth and visually assessing the \({\chi^2}\)
distribution for a DCF fit. Alternatively, we can use the parameter space plots,
detailed in the maxsmooth paper and later in this documentation,
to identify whether the constraints are weak or not, and if a local minima is
returned from the sign navigating routine then the minimum in these plots
will appear off centre.

Assessment of the first derivative of the data can also help to identify an
“ill defined” problem. For the example problem this is shown in the figure below
where the derivatives have been approximated using \({\Delta y/ \Delta x}\).
Higher order derivatives of the data will have similarly complex or simplistic
structures in the respective spaces. There are many combinations of parameters
that will provide smooth fits with similar \({\chi^2}\) values in logarithmic
space leading to the presence of local minima. This issue will also be present
in any data set where the noise or signal of interest are of a similar magnitude
to the foreground in y - x space.

[image: _images/Gradients_fits.png]

maxsmooth Example Codes

This section is designed to introduce the user to the software and the form
in which it is run. It provides basic examples of data fitting with a built in
MSF model and a user defined model.

There are also examples of functions that can be used pre-fitting and post-fitting
for various purposes including; determination of the best DCF model from the
built in library for the problem being fitted, analysis of the \({\chi^2}\)
distribution as a function of the discrete sign spaces and analysis of the
parameter space surrounding the optimum results.

The data used for all of this examples is available
here [https://github.com/htjb/maxsmooth/tree/master/example_codes/Data].

The example codes can be found
here [https://github.com/htjb/maxsmooth/tree/master/example_codes] and
corresponding Jupyter Notebooks are provided
here [https://mybinder.org/v2/gh/htjb/maxsmooth/master?filepath=example_notebooks%2F].

Simple Example code

In order to run the maxsmooth software using the built
in DCF models for a simple fit the user can follow the simple structure detailed here.

An important point to make is that by default maxsmooth fits a
Maximally Smooth Function or MSF to the data. An MSF, as stated in
the introduction to the documentation, is a function which has
derivatives of order \({m \geq 2}\) constrained so that they do not cross
0. This means that they do not have inflection points or non smooth
structure produced by higher order derivatives. More generally a DCF
follows the constraint,

for every constrained order \({m}\). The set of \({m}\) can be any set of
derivative orders as long as those derivatives exist for the function.

This means we can use maxsmooth to produce different DCF
models. MSFs are one of two special cases of DCF and we can also
have a Completely Smooth Function (CSF) with orders \({m \geq 1}\)
constrained. Alternatively we can have Partially Smooth Functions
(PSF) which are much more general and can have arbitrary sets of
derivatives constrained. We illustrate how this is implemented
towards the end of this example but we begin with the default case
fitting a MSF.

The user should begin by importing the smooth class from maxsmooth.DCF.

from maxsmooth.DCF import smooth

The user should then import the data they wish to fit.

import numpy as np

x = np.load('Data/x.npy')
y = np.load('Data/y.npy') + np.random.normal(0, 0.02, len(x))

and define the polynomial orders they wish to fit.

N = [3, 4, 5, 6, 7, 8, 9, 10, 11]
for i in range(len(N)):
 `act on N[i]`

or for example,

N = 15

We can also plot the data to illustrate what is happening.
Here the data is a scaled \({x^{-2.5}}\) power law and I have added gaussian
noise in with a standard deviation of 0.02.

import matplotlib.pyplot as plt

plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.show()

[image: _images/simple_program_data.png]
smooth can be called as is shown below. It takes the x and y data as standard
inputs as well as the order of the fit. There are a set of keyword arguments
also available that change the type of function being fitted and these are
detailed in the documentation.

result = smooth(x, y, N)

and it’s resulting attributes can be accessed by writing
result.attribute_name. For example printing the outputs is done like
so,

print('Objective Funtion Evaluations:\n', result.optimum_chi)
print('RMS:\n', result.rms)
print('Parameters:\n', result.optimum_params)
print('Fitted y:\n', result.y_fit)
print('Sign Combinations:\n', result.optimum_signs)
print('Derivatives:\n', result.derivatives)

plt.plot(x, y - result.y_fit)
plt.xlabel('x', fontsize=12)
plt.ylabel(r'δy', fontsize=12)
plt.tight_layout()
plt.show()

[image: _images/simple_program_msf_residuals.png]
To fit the data with a CSF we can use the ‘constraints’ keyword
argument in smooth(). ‘constraints’ sets the minimum constrained
derivative for the function which for a CSF we want to be one.

res = smooth(x, y, N, constraints=1)

Note in the printed results the number of constrained derivatives has
increased by 1 and the only derivative that is allowed to cross through 0
(Zero Crossings Used?) is the the \({0^{th}}\) order i.e. the data.

plt.plot(x, y - res.y_fit)
plt.xlabel('x', fontsize=12)
plt.ylabel(r'δy', fontsize=12)
plt.tight_layout()
plt.show()

[image: _images/simple_program_csf_residuals.png]
A Partially Smooth Function can have derivatives constrained via \({m \geq a}\)
where \({a}\) is
any order above 2 or it can have a set of derivatives that are allowed to cross
zero. For the first case we can once again use the ‘constraints’ keyword
argument. For example we can constrain derivatives with orders \({\geq 3}\) which will
allow the \({1^{st}}\) and \({2^{nd}}\) order derivatives to cross zero.
This is useful when our
data features an inflection point we want to model with our fit.

res = smooth(x, y, N, constraints=3)

plt.plot(x, y - res.y_fit)
plt.xlabel('x', fontsize=12)
plt.ylabel(r'δy', fontsize=12)
plt.tight_layout()
plt.show()

[image: _images/50f3f3f6aeb82103acc3fca5404655884207aecc.png]
To allow a particular set of derivatives to cross zero we use the
‘zero_crossings’ keyword. In the example below we are lifting the constraints
on the \({3^{rd}}\), \({4^{th}}\) and \({5^{th}}\) order derivatives
but our minimum constrained derivative is still set at the default 2. Therefore
this PSF has derivatives of order \({m = [2, 6, 7, 8, 9]}\)
constrained via the condition at the begining of this example code.

res = smooth(x, y, N, zero_crossings=[3, 4, 5])

plt.plot(x, y - res.y_fit)
plt.xlabel('x', fontsize=12)
plt.ylabel(r'δy', fontsize=12)
plt.tight_layout()
plt.show()

[image: _images/d9f859c937af6f4ef13cff1816644edf4e576113.png]
While PSFs can seem like an attractive way to improve the quality of fit they
are less ‘smooth’ than a MSF or CSF and consequently they can introduce
additional turning points in to your residuals obscuring any signals of
intrest.

Turning Points and Inflection Points

This example will walk the user through implementing DCF fits to data sets with
turning points and inflection points. It builds on the details in the
‘Simple Example Code’ and uses the ‘constraints’ keyword argument introduced
there. The ‘constraints’ keyword argument is used to adjust the type of DCF that
is being fitted. Recall that by default maxsmooth implements a Maximally
Smooth Function or MSF with constraints=2 i.e. derivatives of order \({m \geq 2}\)
constrained so that they do not cross zero. This allows for turning points in the
DCF as illustrated below.

We start by generating some noisy data that we know will include a turning point
and defining the order of the DCF we would like to fit.

import numpy as np

x = np.linspace(-10, 10, 100)
noise = np.random.normal(0, 0.02, 100)
y = x**(2) + noise

N = 10

We can go ahead and plot this data just to double check it features a turning
point.

import matplotlib.pyplot as plt

plt.plot(x, y)
plt.xlabel('x', fontsize=12)
plt.ylabel('y', fontsize=12)
plt.show()

[image: _images/turning_point_example.png]
As already stated maxsmooth does not constrain the first derivative of the
DCF by default so we can go ahead and fit the data.

from maxsmooth.DCF import smooth

res = smooth(x, y, N)

If we than plot the resultant residuals we will see that despite the data
having a turning point present we have recovered the Gaussian noise.

plt.plot(x, y- res.y_fit, label='Recovered Noise')
plt.plot(x, noise, label='Actual Noise')
plt.ylabel(r'δy', fontsize=12)
plt.xlabel('x', fontsize=12)
plt.legend()
plt.show()

[image: _images/turning_point_example_res.png]
To illustrate what happens when there is an inflection point in the data we can
define some sinusoidal data as so.

x = np.linspace(1, 5, 100)
noise = np.random.normal(0, 0.02, 100)
y = np.sin(x) + noise

N = 10

plt.plot(x, y)
plt.xlabel('x', fontsize=12)
plt.ylabel('y', fontsize=12)
plt.show()

[image: _images/inflection_point_example.png]
If we proceed to fit this with smooth() in its default settings we will get a
poor fit as by default the second derivative is constrained. We need to lift this
constraint to allow for the prominent inflection point to be modelled. We do this
by setting the keyword argument constraints=3 creating a Partially Smooth Function
or PSF.

res_msf = smooth(x, y, N)
res_psf = smooth(x, y, N, constraints=3)

plt.plot(x, y, label='Data')
plt.plot(x, res_msf.y_fit, label=r'MSF fit, $m \geq 2$')
plt.plot(x, res_psf.y_fit, label=r'PSF fit, $m \geq 3$')
plt.xlabel('x', fontsize=12)
plt.ylabel('y', fontsize=12)
plt.legend()
plt.show()

[image: _images/a2e8ef7ead9e08d76a5679bd4d370ef033b45fe8.png]
Finally, we can plot the residuals to further see that by lifting the constraint on the
second derivative we have allowed an inflection point in the data.

plt.plot(x, y- res_psf.y_fit, label='Recovered Noise')
plt.plot(x, noise, label='Actual Noise')
plt.ylabel(r'δy', fontsize=12)
plt.xlabel('x', fontsize=12)
plt.legend()
plt.show()

[image: _images/inflection_point_example_res.png]

New Basis Example

This example code illustrates how to define your own basis function for the
DCF model.
It implements a modified version of the built in normalized polynomial model
but the structure is the same for more elaborate models.

As always we need to import the data, define an order \({N}\)
and import the function fitting routine, smooth().

import numpy as np
from maxsmooth.DCF import smooth

x = np.load('Data/x.npy')
y = np.load('Data/y.npy')

N=10

There are several requirements needed to define a new basis function completely
for maxsmooth to be able to fit it. They are as summarized below and then
examples of each are given in more detail,

	args: Additional non-standard arguments needed in the definition of the
basis. The standard arguments are the data (x and y), the order of the fit N,
the pivot point about which a model can be fit,
the derivative order \({m}\) and the params. While the
pivot point is not strictly needed it is a required argument for the
functions defining a new basis to help the user in their definition.

	basis_functions: This function defines the basis of the DCF model,
\({\phi}\) where the model can be generally defined as,

\[y = \sum_{k = 0}^N a_k \phi_k(x)\]

where \({a_k}\) are the fit parameters.

	model: This is the function described by the equation above.

	derivative: This function defines the \({m^{th}}\) order derivative.

	derivative_pre: This function defines the prefactors,
\({\mathbf{G}}\) on the derivatives where CVXOPT, the quadratic
programming routine used, evaluates the constraints as,

\[\mathbf{Ga} \leq \mathbf{h}\]

where \({\mathbf{a}}\) is the matrix of parameters and \({\mathbf{h}}\)
is the matrix of constraint limits. For more details on this see the maxsmooth
paper.

We can begin defining our new basis function by defining the additional arguments
needed to fit the model as a list,

arguments = [x[-1]*10, y[-1]*10]

The next step is to define the basis functions \({\phi}\). This needs to be
done in a function that has the arguments (x, y, pivot_point, N, *args). ‘args’
is optional but since we need them for this basis we are passing it in.

The basis functions, \({\phi}\), should be an array of dimensions len(x)
by N and consequently evaluated at each N and x data point as shown below.

def basis_functions(x, y, pivot_point, N, *args):

 phi = np.empty([len(x), N])
 for h in range(len(x)):
 for i in range(N):
 phi[h, i] = args[1]*(x[h]/args[0])**i

 return phi

We can define the model that we are fitting in a function like that shown below.
This is used for evaluating \({\chi^2}\) and returning the optimum fitted model
once the code has finished running. It requires the arguments
(x, y, pivot_point, N, params, *args) in that order and again where ‘args’ is optional.
‘params’ is the parameters of the fit, \({\mathbf{a}}\) which should have length
\({N}\).

The function should return the fitted estimate of y.

def model(x, y, pivot_point, N, params, *args):

 y_sum = args[1]*np.sum([
 params[i]*(x/args[0])**i
 for i in range(N)], axis=0)

 return y_sum

Next we have to define a function for the derivatives of the model which
takes arguments (m, x, y, N, pivot_point, params, *args) where \({m}\) is
the derivative order. The function should return the \({m^{th}}\) order
derivative evaluation and is used for checking that the constraints have been
met and returning the derivatives of the optimum fit to the user.

def derivative(m, x, y, N, pivot_point, params, *args):

 mth_order_derivative = []
 for i in range(N):
 if i <= m - 1:
 mth_order_derivative.append([0]*len(x))
 for i in range(N - m):
 mth_order_derivative_term = args[1]*np.math.factorial(m+i) / \
 np.math.factorial(i) * \
 params[int(m)+i]*(x)**i / \
 (args[0])**(i + 1)
 mth_order_derivative.append(
 mth_order_derivative_term)

 return mth_order_derivative

Finally we have to define \({\mathbf{G}}\) which is used by CVXOPT to
build the derivatives and constrain the functions. It takes arguments
(m, x, y, N, pivot_point, *args) and should return the prefactor on the
\({m^{th}}\) order derivative. For a more thorough definition of the
prefactor on the derivative and an explanation of how the problem is
constrained in quadratic programming see the maxsmooth paper.

def derivative_pre(m, x, y, N, pivot_point, *args):

 mth_order_derivative = []
 for i in range(N):
 if i <= m - 1:
 mth_order_derivative.append([0]*len(x))
 for i in range(N - m):
 mth_order_derivative_term = args[1]*np.math.factorial(m+i) / \
 np.math.factorial(i) * \
 (x)**i / \
 (args[0])**(i + 1)
 mth_order_derivative.append(
 mth_order_derivative_term)

 return mth_order_derivative

With our functions and additional arguments defined we can pass these
to the maxsmooth smooth() function as is shown below. This overwrites the
built in DCF model but you are still able to modify the fit type i.e. testing all
available sign combinations or sampling them.

result = smooth(x, y, N,
 basis_functions=basis_functions, model=model,
 derivatives=derivative, der_pres=derivative_pre, args=arguments)

The output of the fit can be accessed as before,

print('Objective Funtion Evaluations:\n', result.optimum_chi)
print('RMS:\n', result.rms)
print('Parameters:\n', result.optimum_params)
print('Fitted y:\n', result.y_fit)
print('Sign Combinations:\n', result.optimum_signs)
print('Derivatives:\n', result.derivatives)

Best Basis Example

This function can be used to identify which of the built in DCFs
fits the data best before running joint fits.

To use it we begin by loading in the data,

import numpy as np

x = np.load('Data/x.npy')
y = np.load('Data/y.npy')

and then importing the basis_test() function.

from maxsmooth.best_basis import basis_test

To call the function we use,

basis_test(x, y, base_dir='examples/', N=np.arange(3, 16, 1))

The function only requires the data but we can provide it with a base directory,
fit type and range of DCF orders to test. By defualt it uses the sign navigating
algorithm and tests \({N = 3 - 13}\). Here we test the range
:math:{N = 3 - 15}.
The resultant graph is saved in the
base directory and the example generated here is shown below.

[image: _images/Basis_functions.png]
The graph shows us which basis is the optimum for solving this problem from the
built in library (that which can reach the minimum :math:{\chi^2}). If we
were to go to higher N we would also find that the :math:{\chi^2} value
would stop decreasing in value. The value of N for which this occurs at is the
optimum DCF order. (See the maxsmooth paper for a real world application
of this concept.)

We can also provide this function with additional arguments such as the
fit type, minimum constrained derivative, directional exploration limits
ect. (see the maxsmooth Functions section).

\({\chi^2}\) Distribution Example

This example will show you how to generate a plot of the \({\chi^2}\)
distribution as a function of the discrete sign combinations on the constrained
derivatives.

First you will need to import your data and fit this using maxsmooth as
was done in the simple example code.

import numpy as np

x = np.load('Data/x.npy')
y = np.load('Data/y.npy')

from maxsmooth.DCF import smooth

N = 10
result = smooth(x, y, N, base_dir='examples/',
 data_save=True, fit_type='qp')

Here we have used some additional keyword arguments for the ‘smooth’ fitting
function. ‘data_save’ ensures that the files containing the tested sign combinations
and the corresponding objective function evaluations exist in the base directory
which we have changed to ‘base_dir=’examples/’‘. These files are essential for
the plotting the \({\chi^2}\) distribution and are not saved by maxsmooth
without ‘data_save=True’. We have also set the ‘fit_type’ to ‘qp’ rather than the
default ‘qp-sign_flipping’. This ensures that all of the available sign
combinations are tested rather than a sampled set giving us a full picture of the
distribution when we plot it. We have used the default DCF model to fit this data.

We can import the ‘chi_plotter’ like so,

from maxsmooth.chidist_plotter import chi_plotter

and produce the fit which gets placed in the base directory with the following
code,

chi_plotter(N, base_dir='examples/', fit_type='qp')

We pass the same ‘base_dir’ as before so that the plotter can find the correct output
files. We also give the function the same ‘fit_type’ used for the fitting which
ensures that the files can be read.

The resultant plot is shown below and the yellow star shows the global minimum.
This can be used to determine how well
the sign sampling approach using a descent and directional exploration
can find the global minimum. If the distribution looks like noise then it is
unlikely the sign sampling algorithm will consistently find the global minimum.
Rather it will likely repeatedly return the local minima found after the descent
algorithm and you should use the ‘qp’ method testing all available sign combinations
in any future fits to the data with this DCF model.

[image: _images/chi_distribution.png]

Parameter Plotter Example

We can assess the parameter space around the optimum solution
found using maxsmooth with the param_plotter() function.
This can help us identify how well a problem can be solved using the
sign navigating approach employed by maxsmooth or simply
be used to identify correlations between the foreground parameters.
For more details on this see the maxsmooth paper.

We begin by importing and fitting the data as with the chi_plotter()
function illustrated above.

import numpy as np

x = np.load('Data/x.npy')
y = np.load('Data/y.npy')

from maxsmooth.DCF import smooth

N = 5
result = smooth(x, y, N, base_dir='examples/', fit_type='qp')

We have changed the order of the fit to 5 to illustrate that for
order \({N \leq 5}\) and fits with derivatives \({m \geq 2}\) constrained
the function will plot each region of the graph corresponding to
different sign combinations in a different colourmap. Recall that
by default the function smooth() fits a maximally smooth function (MSF) with
derivatives of order \({m \geq 2}\). If the constraints are
different or the order is greater than 5 then the viable regions will have
a single colourmap. Invalid regions are plotted as black shaded colourmaps
and the contour lines are contours of \({\chi^2}\).

Specifically, invalid regions violate the condition

\[\pm_m \frac{\delta^m y}{\delta x^m} \leq 0\]

where \({m}\) represents the derivative order, \({y}\) is the dependent
variable and \({x}\) is the independent variable. Violation of the
condition means that one or more of the constrained derivatives crosses 0 in the
band of interest. For an MSF, as mentioned, \({m \geq 2}\) and the sign \({\pm_m}\)
applies to specific derivative orders. For this specific example there are
3 constrained derivatives, \({m = 2, 3, 4}\) and consequently 3 signs to
optimise for alongside the parameters \({a_k}\). The coloured valid regions
therefore correspond to a specific combination of \({\pm_m}\) for the problem.
\({\pm_m}\) is also referred to as \({\mathbf{s}}\) in the theory
section and the maxsmooth paper.

We can import the function like so,

from maxsmooth.parameter_plotter import param_plotter

and access it using,

param_plotter(result.optimum_params, result.optimum_signs,
 x, y, N, base_dir='examples/')

The function takes in the optimum parameters and signs found after the fit
as well as the data and order of the fit. There are a number of keyword arguments
detailed in the following section and the resultant fit is shown below. The
function by default samples the parameter ranges 50% either side of the optimum
and calculates 50 samples for each parameter. In each panel the two
labelled parameters are varied while the others are maintained at their optimum
values.

[image: _images/Parameter_plot.png]
We are also able to plot the data, fit and residuals alongside the parameter
plot and this can be done by setting data_plot=True. We can also highlight the
central region in each panel of the parameter space by setting center_plot=True.

param_plotter(result.optimum_params, result.optimum_signs,
 x, y, N, base_dir='examples/', data_plot=True, center_plot=True)

which gives us the graph below.

[image: _images/Parameter_plot_extended.png]

maxsmooth Functions

This section details the specifics of the built in functions in maxsmooth including
the relevant keyword arguments and default parameters for all. Where keyword arguments
are essential for the functions to run this is stated.

smooth()

smooth, as demonstrated in the examples section,
is used to call the fitting routine. There are a number
of \({^{**}}\) kwargs that can be assigned to the function which change how
the fit is performed, the model that is fit and various other attributes.
These are detailed below.

	
class maxsmooth.DCF.smooth(x, y, N, **kwargs)

	Parameters:

	x: numpy.array

	
The x data points for the set being fitted.

	y: numpy.array

	
The y data points for fitting.

	N: int

	
The number of terms in the DCF.

Kwargs:

	fit_type: Default = ‘qp-sign_flipping’

	
This kwarg allows the user to
switch between sampling the available discrete sign spaces
(default) or testing all sign combinations on the derivatives
which can be accessed by setting to ‘qp’.

	model_type: Default = ‘difference_polynomial’

	
Allows the user to
access default Derivative Constrained Functions built into the
software. Available options include the default, ‘polynomial’,
‘normalised_polynomial’, ‘legendre’, ‘log_polynomial’,
‘loglog_polynomial’ and ‘exponential’. For more details on the
functional form of the built in basis see the maxsmooth
paper.

pivot_point: Default = len(x)//2 otherwise an integer between
-len(x) and len(x)

Some of the built in
models rely on pivot points in the data sets which by defualt
is set as the middle index. This can be altered via
this kwarg which can occasionally lead to a better quality fit.

	base_dir: Default = ‘Fitted_Output/’

	
The location of the outputted
data from maxsmooth. This must be a string and end in ‘/’.
If the file does not exist then maxsmooth will create it.
By default the only outputted data is a summary of the best
fit but additional data can be recorded by setting the keyword
argument ‘data_save = True’.

	data_save: Default = False

	
By setting this to True the algorithm
will save every tested set of parameters, signs and objective
function evaluations into files in base_dir. Theses files will
be over written on repeated runs but they are needed to run the
‘chidist_plotter’.

	all_output: Default = False

	
If set to True this outputs to the
terminal every fit performed by the algorithm. By default the
only output is the optimal solution once the code is finished.

	cvxopt_maxiter: Default = 10000 else integer

	
This shouldn’t need
changing for most problems however if CVXOPT fails with a
‘maxiters reached’ error message this can be increased.
Doing so arbitrarily will however increase the run time of
maxsmooth.

	initial_params: Default = None else list of length N

	
Allows the user
to overwrite the default initial parameters used by CVXOPT.

constraints: Default = 2 else an integer less than or equal
to N - 1

The minimum constrained derivative order which is set by default
to 2 for a Maximally Smooth Function.

	zero_crossings: Default = None else list of integers

	
Allows you to
specify if the conditions should be relaxed on any
of the derivatives between constraints and the highest order
derivative. e.g. a 6th order fit with just a constrained 2nd
and 3rd order derivative would have zero_crossings = [4, 5].

	cap: Default = (len(available_signs)//N) + N else an integer

	
Determines the maximum number of signs explored either side of
the minimum \({\chi^2}\) value found after the decent
algorithm has terminated.

	chi_squared_limit: Default = 2 else float or int

	
The prefactor on the maximum allowed increase in \({\chi^2}\)
during the directional exploration which is defaulted at 2.
If this value multiplied by the minimum \({\chi^2}\)
value found after the descent algorithm is exceeded then the
exploration in one direction is stopped and started in the
other. For more details on this and ‘cap’ see the maxsmooth
paper.

The following Kwargs can be used by the user to define their own basis
function and will overwrite the ‘model_type’ kwarg.

basis_function: Default = None else function with parameters
(x, y, pivot_point, N)

This is a function of basis functions
for the quadratic programming. The variable pivot_point is the
index at the middle of the datasets x and y by default but can
be adjusted.

model: Default = None else function with parameters
(x, y, pivot_point, N, params)

This is
a user defined function describing the model to be fitted to
the data.

der_pres: Default = None else function with parameters
(m, x, y, N, pivot_point)

This function describes the prefactors on the
mth order derivative used in defining the constraint.

derivatives: Default = None else function with parameters
(m, x, y, N, pivot_point, params)

User defined function describing the mth
order derivative used to check that conditions are being met.

	args: Default = None else list

	
Extra arguments for smooth
to pass to the functions detailed above.

Output

	.y_fit: numpy.array

	
The fitted array of y data from smooth().

	.optimum_chi: float

	
The optimum \({\chi^2}\) value for the fit calculated by,

\[{X^2=\sum(y-y_{fit})^2}.\]

	.optimum_params: numpy.array

	
The set of parameters corresponding to the optimum fit.

	.rms: float

	
The rms value of the residuals \({y_{res}=y-y_{fit}}\)
calculated by,

\[{rms=\sqrt{\frac{\sum(y-y_{fit})^2}{n}}}\]

where \(n\) is the number of data points.

	.derivatives: numpy.array

	
The \(m^{th}\) order derivatives.

	.optimum_signs: numpy.array

	
The sign combinations corresponding to the
optimal result. The nature of the constraint means that a
negative maxsmooth sign implies a positive \({m^{th}}\)
order derivative and visa versa.

best_basis()

As demonstrated, this function allows you to test the built in basis and their
ability to
fit the data. It produces a plot that shows chi squared as a function of
\({N}\) for the 7 built in models and saves the figure to the base
directory.

	
class maxsmooth.best_basis.basis_test(x, y, **kwargs)

	Parameters:

	x: numpy.array

	
The x data points for the set being fitted.

	y: numpy.array

	
The y data points for fitting.

Kwargs:

	fit_type: Default = ‘qp-sign_flipping’

	
This kwarg allows the user to switch between sampling the
available discrete sign spaces (default)
or testing all sign combinations on the derivatives which can
be accessed by setting to ‘qp’.

	base_dir: Default = ‘Fitted_Output/’

	
The location of the outputted
graph from function. This must be a string and end in ‘/’. If
the file does not exist then the function will create it.

N: Default = [3, .., 13] in steps of 1 else list or numpy array
of integers

The DCF orders to test each basis function with. In
some instances the basis function may fail for a given
\({N}\) and higher orders due to overflow/underflow
errors or CVXOPT errors.

pivot_point: Default = len(x)//2 otherwise an integer between
-len(x) and len(x)

Some of the built in
models rely on pivot points in the data sets which by defualt
is set as the middle index. This can be altered via
this kwarg which can occasionally lead to a better quality fit.

constraints: Default = 2 else an integer less than or equal
to N - 1

The minimum constrained derivative order which is set by default
to 2 for a Maximally Smooth Function.

	zero_crossings: Default = None else list of integers

	
Allows you to
specify if the conditions should be relaxed on any
of the derivatives between constraints and the highest order
derivative. e.g. a 6th order fit with just a constrained 2nd
and 3rd order derivative would have zero_crossings = [4, 5].

	cap: Default = (len(available_signs)//N) + N else an integer

	
Determines the maximum number of signs explored either side of
the minimum \({\chi^2}\) value found after the decent
algorithm has terminated.

	chi_squared_limit: Default = 2 else float or int

	
The prefactor on the maximum allowed increase in \({\chi^2}\)
during the directional exploration which is defaulted at 2.
If this value multiplied by the minimum \({\chi^2}\)
value found after the descent algorithm is exceeded then the
exploration in one direction is stopped and started in the
other. For more details on this and ‘cap’ see the maxsmooth
paper.

	cvxopt_maxiter: Default = 10000 else integer

	
This shouldn’t need
changing for most problems however if CVXOPT fails with a
‘maxiters reached’ error message this can be increased.
Doing so arbitrarily will however increase the run time of
maxsmooth.

chidist_plotter()

This function allows the user to produce plots of the chi squared
distribution as a function of the available discrete sign spaces for the
constrained derivatives. This can be used to identify whether or not the
problem is ill defined, see the maxsmooth paper for a definition,
and if it can be solved using the sign sampling approach.

It can also be used to determine whether or not the ‘cap’ and maximum allowed
increase on the value of chi squared during the directional exploration
are sufficient to identify the global minimum for the problem.

The function is reliant on the output of the maxsmooth smooth() function.
The required outputs can be saved when running smooth()
using the ‘data_save = True’ kwarg.

	
class maxsmooth.chidist_plotter.chi_plotter(N, **kwargs)

	Parameters:

	N: int

	
The number of terms in the DCF.

Kwargs:

	fit_type: Default = ‘qp-sign_flipping’

	
This kwarg is the same as for the smooth() function.
Here it allows the files to be read from the base
directory.

	base_dir: Default = ‘Fitted_Output/’

	
The location of the outputted
data from maxsmooth. This must be a string and end in ‘/’
and must contain the files ‘Output_Evaluations/’ and
‘Output_Signs/’ which can be obtained by running smooth() with
data_save=True.

	chi: Default = None else list or numpy array

	
A list of
chi squared evaluations. If provided then this is used
over outputted data in the base directory. It must have the
same length as the ouputted signs in the file ‘Output_Signs/’
in the base directory. It must also be ordered correctly
otherwise the returned graph will not be correct. A correct
ordering is one for which each entry in the array corresponds
to the correct sign combination in ‘Output_Signs/’.
Typically this will not be needed but if the chi squared
evaluation in ‘Output_Evaluations/’ in the base directory
is not in the desired parameter space this can be useful.
For example the built in logarithmic model calculates
chi squared in logarithmic space. To plot the distribution
in linear space we can calculate
chi squared in linear space using a function for the model
and the tested parameters which are found in
‘Output_Parameters/’ in the base directory.

constraints: Default = 2 else an integer less than or equal
to N - 1

The minimum constrained derivative order which is set by default
to 2 for a Maximally Smooth Function. Used here to determine
the number of possible sign combinations available.

	zero_crossings: Default = None else list of integers

	
Allows you to
specify if the conditions should be relaxed on any
of the derivatives between constraints and the highest order
derivative. e.g. a 6th order fit with just a constrained 2nd
and 3rd order derivative would have a zero_crossings = [4, 5].
Again this is used in determining the possible sign
combinations available.

	plot_limits: Default = False

	
Determines whether the limits on
the directional exploration are plotted on top of the
chi squared distribution.

	cap: Default = (len(available_signs)//N) + N else an integer

	
Determines the maximum number of signs explored either side of
the minimum chi squared value found after the
decent algorithm has terminated when running smooth(). Here
it is used when plot_limits=True.

	chi_squared_limit: Default = 2 else float or int

	
The prefactor on the maximum allowed increase in chi squared
during the directional exploration which is defaulted at 2.
If this value multiplied by the minimum chi squared
value found after the descent algorithm is exceeded then the
exploration in one direction is stopped and started in the
other. For more details on this and ‘cap’ see the maxsmooth
paper. Again this is used here
when plot_limits=True.

parameter_plotter()

This function allows you to plot the parameter space around the optimum
solution found when running maxsmooth and visualise the constraints with
contour lines given by chi squared.

	
class maxsmooth.parameter_plotter.param_plotter(best_params, optimum_signs, x, y, N, **kwargs)

	Parameters:

	best_params: numpy.array

	
The optimum parameters found when running
a DCF fit to the data.

	optimum_signs: numpy.array

	
The optimum signs for the DCF fit which
are used when the derivatives are equal to 0 across the band.

	x: numpy.array

	
The x data points.

	y: numpy.array

	
The y data points.

	N: int

	
The number of terms in the DCF.

Kwargs:

	model_type: Default = ‘difference_polynomial’

	
The functional form of
the model being plotted. If a the user has defined their own
basis they can supply this with the Kwargs below and this
will be overwritten.

	base_dir: Default = ‘Fitted_Output/’

	
The location in which the
parameter plot is saved.

constraints: Default = 2 else an integer less than or equal
to N - 1

The minimum constrained derivative order which is set by default
to 2 for a Maximally Smooth Function. Used here to
determine the number of possible sign combinations available.

	zero_crossings: Default = None else list of integers

	
Allows you to
specify if the conditions should be relaxed on any
of the derivatives between constraints and the highest order
derivative. e.g. a 6th order fit with just a constrained
2nd and 3rd order derivative would have an
zero_crossings = [4, 5].
Again this is used in determining the possible sign
combinations available.

	samples: Default = 50

	
The sampling rate across the parameter ranges
defined with the optimum solution and width.

	width: Default = 0.5

	
The range of each parameter to explore. The
default value of 0.5 means that the \({\chi^2}\)
values for parameters ranging 50% either side of the optimum
result are tested.

	warnings: Default = True

	
Used to highlight when a derivative is
0 across the band and that in these instances the optimum
signs are assumed for the colourmap if \({N \leq 5}\),
constraints=2 and the zero_crossings is empty.

	girdlines: Default = False

	
Plots gridlines showing the central value
for each parameter in each panel of the plot.

	center_plot: Default = False

	
Setting this equal to True will highlight the central region
with a white circle.

	data_plot: Default = False

	
Setting to True will plot the data, fitted model and the
residuals, \({y - y_{fit}}\), alongside the
parameter graph.

The following Kwargs are used to plot the parameter space for a user
defined basis function and will overwrite the ‘model_type’ kwarg.

basis_function: Default = None else function with parameters
(x, y, pivot_point, N)

This is a function of basis functions
for the quadratic programming. The variable pivot_point is the
index at the middle of the datasets x and y by default but can
be adjusted.

model: Default = None else function with parameters
(x, y, pivot_point, N, params)

This is
a user defined function describing the model to be fitted to
the data.

der_pres: Default = None else function with parameters
(m, x, y, N, pivot_point)

This function describes the prefactors on the
mth order derivative used in defining the constraint.

derivatives: Default = None else function with parameters
(m, x, y, N, pivot_point, params)

User defined function describing the mth
order derivative used to check that conditions are being met.

	args: Default = None else list

	
Extra arguments for smooth
to pass to the functions detailed above.

Change Log

Unreleased changes are not yet included in the pip install but are pushed to the
github.

Unrealeased

Version 1.1.0

	Two bug fixes in param_plotter()

	Extension of param_plotter() function to plot data, fit and residuals
alongside the parameter space if required.

	Extension of param_plotter() to allow for highlighting of central
regions in each panel if required.

	Inclusion of some theory into the documentation

Version 1.2.0

	Minor bug fix in param_plotter()

	Extension of the basis_test() function to allow users to compare different
types of DCF not just MSFs.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 maxsmooth	

 	
 	
 maxsmooth.best_basis	

 	
 	
 maxsmooth.chidist_plotter	

 	
 	
 maxsmooth.DCF	

 	
 	
 maxsmooth.parameter_plotter	

Index

 B
 | C
 | M
 | P
 | S

B

 	
 	basis_test (class in maxsmooth.best_basis)

C

 	
 	chi_plotter (class in maxsmooth.chidist_plotter)

M

 	
 	maxsmooth.best_basis (module)

 	maxsmooth.chidist_plotter (module)

 	
 	maxsmooth.DCF (module)

 	maxsmooth.parameter_plotter (module)

P

 	
 	param_plotter (class in maxsmooth.parameter_plotter)

S

 	
 	smooth (class in maxsmooth.DCF)

 Unreleased changes are not yet included in the pip install but are pushed to the
github.

Unrealeased

Version 1.1.0

	Two bug fixes in param_plotter()

	Extension of param_plotter() function to plot data, fit and residuals
alongside the parameter space if required.

	Extension of param_plotter() to allow for highlighting of central
regions in each panel if required.

	Inclusion of some theory into the documentation

Version 1.2.0

	Minor bug fix in param_plotter()

	Extension of the basis_test() function to allow users to compare different
types of DCF not just MSFs.

 This function can be used to identify which of the built in DCFs
fits the data best before running joint fits.

To use it we begin by loading in the data,

import numpy as np

x = np.load('Data/x.npy')
y = np.load('Data/y.npy')

and then importing the basis_test() function.

from maxsmooth.best_basis import basis_test

To call the function we use,

basis_test(x, y, base_dir='examples/', N=np.arange(3, 16, 1))

The function only requires the data but we can provide it with a base directory,
fit type and range of DCF orders to test. By defualt it uses the sign navigating
algorithm and tests \({N = 3 - 13}\). Here we test the range
:math:{N = 3 - 15}.
The resultant graph is saved in the
base directory and the example generated here is shown below.

[image: _images/Basis_functions.png]
The graph shows us which basis is the optimum for solving this problem from the
built in library (that which can reach the minimum :math:{\chi^2}). If we
were to go to higher N we would also find that the :math:{\chi^2} value
would stop decreasing in value. The value of N for which this occurs at is the
optimum DCF order. (See the maxsmooth paper for a real world application
of this concept.)

We can also provide this function with additional arguments such as the
fit type, minimum constrained derivative, directional exploration limits
ect. (see the maxsmooth Functions section).

 This example will show you how to generate a plot of the \({\chi^2}\)
distribution as a function of the discrete sign combinations on the constrained
derivatives.

First you will need to import your data and fit this using maxsmooth as
was done in the simple example code.

import numpy as np

x = np.load('Data/x.npy')
y = np.load('Data/y.npy')

from maxsmooth.DCF import smooth

N = 10
result = smooth(x, y, N, base_dir='examples/',
 data_save=True, fit_type='qp')

Here we have used some additional keyword arguments for the ‘smooth’ fitting
function. ‘data_save’ ensures that the files containing the tested sign combinations
and the corresponding objective function evaluations exist in the base directory
which we have changed to ‘base_dir=’examples/’‘. These files are essential for
the plotting the \({\chi^2}\) distribution and are not saved by maxsmooth
without ‘data_save=True’. We have also set the ‘fit_type’ to ‘qp’ rather than the
default ‘qp-sign_flipping’. This ensures that all of the available sign
combinations are tested rather than a sampled set giving us a full picture of the
distribution when we plot it. We have used the default DCF model to fit this data.

We can import the ‘chi_plotter’ like so,

from maxsmooth.chidist_plotter import chi_plotter

and produce the fit which gets placed in the base directory with the following
code,

chi_plotter(N, base_dir='examples/', fit_type='qp')

We pass the same ‘base_dir’ as before so that the plotter can find the correct output
files. We also give the function the same ‘fit_type’ used for the fitting which
ensures that the files can be read.

The resultant plot is shown below and the yellow star shows the global minimum.
This can be used to determine how well
the sign sampling approach using a descent and directional exploration
can find the global minimum. If the distribution looks like noise then it is
unlikely the sign sampling algorithm will consistently find the global minimum.
Rather it will likely repeatedly return the local minima found after the descent
algorithm and you should use the ‘qp’ method testing all available sign combinations
in any future fits to the data with this DCF model.

[image: _images/chi_distribution.png]

 This example code illustrates how to define your own basis function for the
DCF model.
It implements a modified version of the built in normalized polynomial model
but the structure is the same for more elaborate models.

As always we need to import the data, define an order \({N}\)
and import the function fitting routine, smooth().

import numpy as np
from maxsmooth.DCF import smooth

x = np.load('Data/x.npy')
y = np.load('Data/y.npy')

N=10

There are several requirements needed to define a new basis function completely
for maxsmooth to be able to fit it. They are as summarized below and then
examples of each are given in more detail,

	args: Additional non-standard arguments needed in the definition of the
basis. The standard arguments are the data (x and y), the order of the fit N,
the pivot point about which a model can be fit,
the derivative order \({m}\) and the params. While the
pivot point is not strictly needed it is a required argument for the
functions defining a new basis to help the user in their definition.

	basis_functions: This function defines the basis of the DCF model,
\({\phi}\) where the model can be generally defined as,

\[y = \sum_{k = 0}^N a_k \phi_k(x)\]

where \({a_k}\) are the fit parameters.

	model: This is the function described by the equation above.

	derivative: This function defines the \({m^{th}}\) order derivative.

	derivative_pre: This function defines the prefactors,
\({\mathbf{G}}\) on the derivatives where CVXOPT, the quadratic
programming routine used, evaluates the constraints as,

\[\mathbf{Ga} \leq \mathbf{h}\]

where \({\mathbf{a}}\) is the matrix of parameters and \({\mathbf{h}}\)
is the matrix of constraint limits. For more details on this see the maxsmooth
paper.

We can begin defining our new basis function by defining the additional arguments
needed to fit the model as a list,

arguments = [x[-1]*10, y[-1]*10]

The next step is to define the basis functions \({\phi}\). This needs to be
done in a function that has the arguments (x, y, pivot_point, N, *args). ‘args’
is optional but since we need them for this basis we are passing it in.

The basis functions, \({\phi}\), should be an array of dimensions len(x)
by N and consequently evaluated at each N and x data point as shown below.

def basis_functions(x, y, pivot_point, N, *args):

 phi = np.empty([len(x), N])
 for h in range(len(x)):
 for i in range(N):
 phi[h, i] = args[1]*(x[h]/args[0])**i

 return phi

We can define the model that we are fitting in a function like that shown below.
This is used for evaluating \({\chi^2}\) and returning the optimum fitted model
once the code has finished running. It requires the arguments
(x, y, pivot_point, N, params, *args) in that order and again where ‘args’ is optional.
‘params’ is the parameters of the fit, \({\mathbf{a}}\) which should have length
\({N}\).

The function should return the fitted estimate of y.

def model(x, y, pivot_point, N, params, *args):

 y_sum = args[1]*np.sum([
 params[i]*(x/args[0])**i
 for i in range(N)], axis=0)

 return y_sum

Next we have to define a function for the derivatives of the model which
takes arguments (m, x, y, N, pivot_point, params, *args) where \({m}\) is
the derivative order. The function should return the \({m^{th}}\) order
derivative evaluation and is used for checking that the constraints have been
met and returning the derivatives of the optimum fit to the user.

def derivative(m, x, y, N, pivot_point, params, *args):

 mth_order_derivative = []
 for i in range(N):
 if i <= m - 1:
 mth_order_derivative.append([0]*len(x))
 for i in range(N - m):
 mth_order_derivative_term = args[1]*np.math.factorial(m+i) / \
 np.math.factorial(i) * \
 params[int(m)+i]*(x)**i / \
 (args[0])**(i + 1)
 mth_order_derivative.append(
 mth_order_derivative_term)

 return mth_order_derivative

Finally we have to define \({\mathbf{G}}\) which is used by CVXOPT to
build the derivatives and constrain the functions. It takes arguments
(m, x, y, N, pivot_point, *args) and should return the prefactor on the
\({m^{th}}\) order derivative. For a more thorough definition of the
prefactor on the derivative and an explanation of how the problem is
constrained in quadratic programming see the maxsmooth paper.

def derivative_pre(m, x, y, N, pivot_point, *args):

 mth_order_derivative = []
 for i in range(N):
 if i <= m - 1:
 mth_order_derivative.append([0]*len(x))
 for i in range(N - m):
 mth_order_derivative_term = args[1]*np.math.factorial(m+i) / \
 np.math.factorial(i) * \
 (x)**i / \
 (args[0])**(i + 1)
 mth_order_derivative.append(
 mth_order_derivative_term)

 return mth_order_derivative

With our functions and additional arguments defined we can pass these
to the maxsmooth smooth() function as is shown below. This overwrites the
built in DCF model but you are still able to modify the fit type i.e. testing all
available sign combinations or sampling them.

result = smooth(x, y, N,
 basis_functions=basis_functions, model=model,
 derivatives=derivative, der_pres=derivative_pre, args=arguments)

The output of the fit can be accessed as before,

print('Objective Funtion Evaluations:\n', result.optimum_chi)
print('RMS:\n', result.rms)
print('Parameters:\n', result.optimum_params)
print('Fitted y:\n', result.y_fit)
print('Sign Combinations:\n', result.optimum_signs)
print('Derivatives:\n', result.derivatives)

 We can assess the parameter space around the optimum solution
found using maxsmooth with the param_plotter() function.
This can help us identify how well a problem can be solved using the
sign navigating approach employed by maxsmooth or simply
be used to identify correlations between the foreground parameters.
For more details on this see the maxsmooth paper.

We begin by importing and fitting the data as with the chi_plotter()
function illustrated above.

import numpy as np

x = np.load('Data/x.npy')
y = np.load('Data/y.npy')

from maxsmooth.DCF import smooth

N = 5
result = smooth(x, y, N, base_dir='examples/', fit_type='qp')

We have changed the order of the fit to 5 to illustrate that for
order \({N \leq 5}\) and fits with derivatives \({m \geq 2}\) constrained
the function will plot each region of the graph corresponding to
different sign combinations in a different colourmap. Recall that
by default the function smooth() fits a maximally smooth function (MSF) with
derivatives of order \({m \geq 2}\). If the constraints are
different or the order is greater than 5 then the viable regions will have
a single colourmap. Invalid regions are plotted as black shaded colourmaps
and the contour lines are contours of \({\chi^2}\).

Specifically, invalid regions violate the condition

\[\pm_m \frac{\delta^m y}{\delta x^m} \leq 0\]

where \({m}\) represents the derivative order, \({y}\) is the dependent
variable and \({x}\) is the independent variable. Violation of the
condition means that one or more of the constrained derivatives crosses 0 in the
band of interest. For an MSF, as mentioned, \({m \geq 2}\) and the sign \({\pm_m}\)
applies to specific derivative orders. For this specific example there are
3 constrained derivatives, \({m = 2, 3, 4}\) and consequently 3 signs to
optimise for alongside the parameters \({a_k}\). The coloured valid regions
therefore correspond to a specific combination of \({\pm_m}\) for the problem.
\({\pm_m}\) is also referred to as \({\mathbf{s}}\) in the theory
section and the maxsmooth paper.

We can import the function like so,

from maxsmooth.parameter_plotter import param_plotter

and access it using,

param_plotter(result.optimum_params, result.optimum_signs,
 x, y, N, base_dir='examples/')

The function takes in the optimum parameters and signs found after the fit
as well as the data and order of the fit. There are a number of keyword arguments
detailed in the following section and the resultant fit is shown below. The
function by default samples the parameter ranges 50% either side of the optimum
and calculates 50 samples for each parameter. In each panel the two
labelled parameters are varied while the others are maintained at their optimum
values.

[image: _images/Parameter_plot.png]
We are also able to plot the data, fit and residuals alongside the parameter
plot and this can be done by setting data_plot=True. We can also highlight the
central region in each panel of the parameter space by setting center_plot=True.

param_plotter(result.optimum_params, result.optimum_signs,
 x, y, N, base_dir='examples/', data_plot=True, center_plot=True)

which gives us the graph below.

[image: _images/Parameter_plot_extended.png]

 In order to run the maxsmooth software using the built
in DCF models for a simple fit the user can follow the simple structure detailed here.

An important point to make is that by default maxsmooth fits a
Maximally Smooth Function or MSF to the data. An MSF, as stated in
the introduction to the documentation, is a function which has
derivatives of order \({m \geq 2}\) constrained so that they do not cross
0. This means that they do not have inflection points or non smooth
structure produced by higher order derivatives. More generally a DCF
follows the constraint,

for every constrained order \({m}\). The set of \({m}\) can be any set of
derivative orders as long as those derivatives exist for the function.

This means we can use maxsmooth to produce different DCF
models. MSFs are one of two special cases of DCF and we can also
have a Completely Smooth Function (CSF) with orders \({m \geq 1}\)
constrained. Alternatively we can have Partially Smooth Functions
(PSF) which are much more general and can have arbitrary sets of
derivatives constrained. We illustrate how this is implemented
towards the end of this example but we begin with the default case
fitting a MSF.

The user should begin by importing the smooth class from maxsmooth.DCF.

from maxsmooth.DCF import smooth

The user should then import the data they wish to fit.

import numpy as np

x = np.load('Data/x.npy')
y = np.load('Data/y.npy') + np.random.normal(0, 0.02, len(x))

and define the polynomial orders they wish to fit.

N = [3, 4, 5, 6, 7, 8, 9, 10, 11]
for i in range(len(N)):
 `act on N[i]`

or for example,

N = 15

We can also plot the data to illustrate what is happening.
Here the data is a scaled \({x^{-2.5}}\) power law and I have added gaussian
noise in with a standard deviation of 0.02.

import matplotlib.pyplot as plt

plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.show()

[image: _images/simple_program_data.png]
smooth can be called as is shown below. It takes the x and y data as standard
inputs as well as the order of the fit. There are a set of keyword arguments
also available that change the type of function being fitted and these are
detailed in the documentation.

result = smooth(x, y, N)

and it’s resulting attributes can be accessed by writing
result.attribute_name. For example printing the outputs is done like
so,

print('Objective Funtion Evaluations:\n', result.optimum_chi)
print('RMS:\n', result.rms)
print('Parameters:\n', result.optimum_params)
print('Fitted y:\n', result.y_fit)
print('Sign Combinations:\n', result.optimum_signs)
print('Derivatives:\n', result.derivatives)

plt.plot(x, y - result.y_fit)
plt.xlabel('x', fontsize=12)
plt.ylabel(r'δy', fontsize=12)
plt.tight_layout()
plt.show()

[image: _images/simple_program_msf_residuals.png]
To fit the data with a CSF we can use the ‘constraints’ keyword
argument in smooth(). ‘constraints’ sets the minimum constrained
derivative for the function which for a CSF we want to be one.

res = smooth(x, y, N, constraints=1)

Note in the printed results the number of constrained derivatives has
increased by 1 and the only derivative that is allowed to cross through 0
(Zero Crossings Used?) is the the \({0^{th}}\) order i.e. the data.

plt.plot(x, y - res.y_fit)
plt.xlabel('x', fontsize=12)
plt.ylabel(r'δy', fontsize=12)
plt.tight_layout()
plt.show()

[image: _images/simple_program_csf_residuals.png]
A Partially Smooth Function can have derivatives constrained via \({m \geq a}\)
where \({a}\) is
any order above 2 or it can have a set of derivatives that are allowed to cross
zero. For the first case we can once again use the ‘constraints’ keyword
argument. For example we can constrain derivatives with orders \({\geq 3}\) which will
allow the \({1^{st}}\) and \({2^{nd}}\) order derivatives to cross zero.
This is useful when our
data features an inflection point we want to model with our fit.

res = smooth(x, y, N, constraints=3)

plt.plot(x, y - res.y_fit)
plt.xlabel('x', fontsize=12)
plt.ylabel(r'δy', fontsize=12)
plt.tight_layout()
plt.show()

[image: _images/50f3f3f6aeb82103acc3fca5404655884207aecc.png]
To allow a particular set of derivatives to cross zero we use the
‘zero_crossings’ keyword. In the example below we are lifting the constraints
on the \({3^{rd}}\), \({4^{th}}\) and \({5^{th}}\) order derivatives
but our minimum constrained derivative is still set at the default 2. Therefore
this PSF has derivatives of order \({m = [2, 6, 7, 8, 9]}\)
constrained via the condition at the begining of this example code.

res = smooth(x, y, N, zero_crossings=[3, 4, 5])

plt.plot(x, y - res.y_fit)
plt.xlabel('x', fontsize=12)
plt.ylabel(r'δy', fontsize=12)
plt.tight_layout()
plt.show()

[image: _images/d9f859c937af6f4ef13cff1816644edf4e576113.png]
While PSFs can seem like an attractive way to improve the quality of fit they
are less ‘smooth’ than a MSF or CSF and consequently they can introduce
additional turning points in to your residuals obscuring any signals of
intrest.

 This section has been adapted from section 4 of the maxsmooth paper
in order to explain how the algorithm works. What follows is a discussion of
the fitting problem and the
maxsmooth algorithm. To state concisely the problem being fitted we have

\[\begin{split}&\min_{a,~s}~~\frac{1}{2}~\mathbf{a}^T~\mathbf{Q}~\mathbf{a}~+~\mathbf{q}^T~\mathbf{a}, \\
&\mathrm{s.t.}~~\mathbf{G(s)~a} \leq \mathbf{0}.\end{split}\]

where \({\mathbf{s}}\) are the maxsmooth signs corresponding to the
signs on the derivatives. \({\mathbf{G}}\) is a matrix of prefactors on the derivatives,
\({\mathbf{a}}\) are the parameters we are optimising for and their
product gives the derivatives we are constraining with each fit.
\({\mathbf{Q}}\) is the dot product of the matrix of basis functions and
its transpose and \(\mathbf{q}\) is the negative of the transposed data,
\(\mathbf{y}\) dotted with the basis functions. For more details on this
equation see the maxsmooth paper.
A `problem’ in this context is the combination of the data, order, basis
function and constraints on the DCF.

With maxsmooth we can test all possible sign combinations on the constrained derivatives.
This is a
reliable method and, provided the problem can be solved with quadratic programming,
will always give the correct global minimum. When the problem we are interested
in is “well defined”, we can develop a quicker algorithm that searches or navigates
through the discrete maxsmooth sign spaces to find the global minimum.
Each sign space is a discrete parameter space with its own global minimum.
Using quadratic programming on a fit with a specific sign combination will
find this global minimum, and we are interested in finding the minimum
of these global minima.

A “well defined” problem is one in which the discrete sign spaces have large
variance in their minimum \({\chi^2}\) values and the sign space for the
global minimum is easily identifiable. In contrast we can have an “ill defined”
problem in which the variance in minimum \({\chi^2}\) across all sign
combinations is small. This concept of “well defined” and “ill defined” problems
is explored further in the following two sections.

Well Defined Problems and Discrete Sign Space Searches

The \({\chi^2}\) Distribution

We investigate the distribution of \({\chi^2}\) values, shown in the figure below,
for a 10 \({^{th}}\) order y-log(x) space MSF fit to a \({y = x^{-2.5}}\)
power law plus gaussian noise.

In the figure, a combination of all positive derivatives~(negative signs) and
all negative derivatives~(positive signs) corresponds to sign combination numbers
255 and 0 respectively. Specifically, the maxsmooth signs, \({\mathbf{s}}\),
are related to the sign combination number by its \({C}\) bit binary representation,
here \({C = (N -2)}\). In binary the sign combination numbers run from
00000000 to 11111111. Each bit represents the sign on the \({m^{th}}\)
order derivative with a 1 representing a negative maxsmooth sign.

[image: _images/chi_dist_theory.png]
The distribution appears to be composed of smooth steps or shelves; however,
when each shelf is studied closer, we find a series of peaks and troughs. This can
be seen in the subplot of the above figure which shows the distribution in the
neighbourhood of the global minimum found in the large or global’ well. This type
of distribution with a large variance in :math:`{chi^2} is characteristic of a “well defined”
problem. We use this example \({\chi^2}\) distribution to motivate the maxsmooth
algorithm outlined in the following section.

The maxsmooth Sign Navigating Algorithm

Exploration of the discrete sign spaces for high \({N}\) can be achieved by
exploring the spaces around an iteratively updated optimum sign combination.
The maxsmooth algorithm begins with a randomly generated set of signs for
which the objective function is evaluated and the optimum parameters are found.
We flip each individual sign one at a time beginning with the lowest order
constrained derivative first. When the objective function is evaluated to be lower
than that for the optimum sign combination, we replace it with the new set and repeat
the process in a `cascading’ routine until the objective function stops decreasing in value.

The local minima shown in the \({\chi^2}\) distribution above mean that the
cascading algorithm is not sufficient to consistently find the global minimum.
We can demonstrate this by performing 100 separate runs of the cascading
algorithm on \({y = x^{-2.5} + \mathrm{noise}}\), and we use a y-log(x) space
\({10^{th}}\) order MSF again. We find the true global minimum 79
times and a second local minimum 21 times.

To prevent the routine terminating in a local minimum we perform a complete search
of the sign spaces surrounding the minimum found after the cascading routine.
We refer to this search as a directional exploration and impose limits on its
extent. In each direction we limit the number of sign combinations to explore and
we limit the maximum allowed increase in \({\chi^2}\) value. These limits can
be modified by the user. We prevent repeated calculations of the minimum for given
signs and treat the minimum of all tested signs as the global minimum.

We run the consistency test again, with the full maxsmooth algorithm, and find
that for all 100 trial fits we find the same \({\chi^2}\) found when testing
all sign combinations. In the figure below, the red arrows show the approximate path
taken through the discrete sign spaces against the complete distribution of \({\chi^2}\).
Point (1a) shows the random starting point in the algorithm, and point (1b) shows a rejected sign
combination evaluated during the cascade from point (1a) to (2). Point (2), therefore,
corresponds to a step through the cascade. Point (3) marks the end of the cascade
and the start of the left directional exploration. Finally, point (4) shows the end
of the right directional exploration where the calculated \({\chi^2}\)
value exceeds the limit on the directional exploration.

[image: _images/routine.png]
The global well tends to be associated with signs that are all positive,
all negative or alternating. We see this in the figure above where the minimum falls
at sign combination number 169 and number 170, characteristic of the derivatives for
a \({x^{-2.5}}\) power law, corresponds to alternating positive and negative
derivatives from order \({m = 2}\). Standard patterns of derivative signs can be seen
for all data following approximate power laws. All positive derivatives, all negative
and alternating signs correspond to data following the approximate power laws
\({y\approx x^{k}}\), \({y\approx -x^{k}}\), \({y\approx x^{-k}}\) and
\({y\approx -x^{-k}}\).

The maxsmooth algorithm assumes that the global well is present in the \({\chi^2}\)
distribution and this is often the case. The use of DCFs is primarily driven by a
desire to constrain previously proposed polynomial models to foregrounds. As a result
we would expect that the data being fitted could be described by one of the four
approximate power laws highlighted above and that the global minimum will fall
around an associated sign combination. In rare cases the global well is not clearly
defined and this is described in the following subsection.

Ill Defined Problems and their Identification

We can illustrate an “ill defined” problem, with a small variation in
\({\chi^2}\) across the maxsmooth sign spaces, by adding a non-smooth signal
of interest into the foreground model, \({x^{-2.5}}\) and fitting this with
a 10 \({^{th}}\) order log(y)-log(x) space MSF. We add an additional noise of
\({0.020}\) to the mock data. The resultant \({\chi^2}\) distribution with its
global minimum is shown in the top panel of the figure below.

The global minimum, shown as a black data point, cannot be found using the
maxsmooth algorithm. The cascading algorithm may terminate in any of the
approximately equal minima and the directional exploration will then quickly
terminate because of the limits imposed.

[image: _images/combined_chi.png]
If we repeat the above fit and perform it with a y-x space MSF we find that the
problem is well defined with a larger \({\chi^2}\) variation across sign
combinations. This is shown in the bottom panel of the above figure. The results,
when using the log(y)-log(x) space MSF, are significantly better than when using
y-x space MSF meaning it is important to be able to solve “ill defined” problems.
This can be done by testing all maxsmooth signs but knowing when this is
necessary is important if you are expecting to run multiple DCF fits to the
same data set. We can focus on diagnosing whether a DCF fit to the data is
“ill defined” because a joint fit to the same data set of a DCF and signal
of interest will also feature an “ill defined” \({\chi^2}\) distribution.

We can identify an “ill defined” problem by producing the equivalent of
the above figure using maxsmooth and visually assessing the \({\chi^2}\)
distribution for a DCF fit. Alternatively, we can use the parameter space plots,
detailed in the maxsmooth paper and later in this documentation,
to identify whether the constraints are weak or not, and if a local minima is
returned from the sign navigating routine then the minimum in these plots
will appear off centre.

Assessment of the first derivative of the data can also help to identify an
“ill defined” problem. For the example problem this is shown in the figure below
where the derivatives have been approximated using \({\Delta y/ \Delta x}\).
Higher order derivatives of the data will have similarly complex or simplistic
structures in the respective spaces. There are many combinations of parameters
that will provide smooth fits with similar \({\chi^2}\) values in logarithmic
space leading to the presence of local minima. This issue will also be present
in any data set where the noise or signal of interest are of a similar magnitude
to the foreground in y - x space.

[image: _images/Gradients_fits.png]

 This example will walk the user through implementing DCF fits to data sets with
turning points and inflection points. It builds on the details in the
‘Simple Example Code’ and uses the ‘constraints’ keyword argument introduced
there. The ‘constraints’ keyword argument is used to adjust the type of DCF that
is being fitted. Recall that by default maxsmooth implements a Maximally
Smooth Function or MSF with constraints=2 i.e. derivatives of order \({m \geq 2}\)
constrained so that they do not cross zero. This allows for turning points in the
DCF as illustrated below.

We start by generating some noisy data that we know will include a turning point
and defining the order of the DCF we would like to fit.

import numpy as np

x = np.linspace(-10, 10, 100)
noise = np.random.normal(0, 0.02, 100)
y = x**(2) + noise

N = 10

We can go ahead and plot this data just to double check it features a turning
point.

import matplotlib.pyplot as plt

plt.plot(x, y)
plt.xlabel('x', fontsize=12)
plt.ylabel('y', fontsize=12)
plt.show()

[image: _images/turning_point_example.png]
As already stated maxsmooth does not constrain the first derivative of the
DCF by default so we can go ahead and fit the data.

from maxsmooth.DCF import smooth

res = smooth(x, y, N)

If we than plot the resultant residuals we will see that despite the data
having a turning point present we have recovered the Gaussian noise.

plt.plot(x, y- res.y_fit, label='Recovered Noise')
plt.plot(x, noise, label='Actual Noise')
plt.ylabel(r'δy', fontsize=12)
plt.xlabel('x', fontsize=12)
plt.legend()
plt.show()

[image: _images/turning_point_example_res.png]
To illustrate what happens when there is an inflection point in the data we can
define some sinusoidal data as so.

x = np.linspace(1, 5, 100)
noise = np.random.normal(0, 0.02, 100)
y = np.sin(x) + noise

N = 10

plt.plot(x, y)
plt.xlabel('x', fontsize=12)
plt.ylabel('y', fontsize=12)
plt.show()

[image: _images/inflection_point_example.png]
If we proceed to fit this with smooth() in its default settings we will get a
poor fit as by default the second derivative is constrained. We need to lift this
constraint to allow for the prominent inflection point to be modelled. We do this
by setting the keyword argument constraints=3 creating a Partially Smooth Function
or PSF.

res_msf = smooth(x, y, N)
res_psf = smooth(x, y, N, constraints=3)

plt.plot(x, y, label='Data')
plt.plot(x, res_msf.y_fit, label=r'MSF fit, $m \geq 2$')
plt.plot(x, res_psf.y_fit, label=r'PSF fit, $m \geq 3$')
plt.xlabel('x', fontsize=12)
plt.ylabel('y', fontsize=12)
plt.legend()
plt.show()

[image: _images/a2e8ef7ead9e08d76a5679bd4d370ef033b45fe8.png]
Finally, we can plot the residuals to further see that by lifting the constraint on the
second derivative we have allowed an inflection point in the data.

plt.plot(x, y- res_psf.y_fit, label='Recovered Noise')
plt.plot(x, noise, label='Actual Noise')
plt.ylabel(r'δy', fontsize=12)
plt.xlabel('x', fontsize=12)
plt.legend()
plt.show()

[image: _images/inflection_point_example_res.png]

 _static/plus.png

_static/file.png

_static/minus.png

_images/50f3f3f6aeb82103acc3fca5404655884207aecc.png
0.04

0.02

0.00

-0.02

-0.04

60

80

100

120

140

_static/up-pressed.png

_static/up.png

_images/Parameter_plot.png
68 o

&
wuer $00°0—
z00L
z€0'9
290 900°0—
260

2933 | /
1517
Te1T
t1z0

Invalid Region|
[11-1

a

T

2

09

2
ao

ot

2022 3 % 8 8
T8 aR gggg "R aF
[] Nm S s 5 9 e

_images/Parameter_plot_extended.png
Invalid Region

s=[11-1]

o a
g& g |9 g
A H
[] g
g |2 g
g g~
< <
8 8
s s
g g
g 2 8 &8 g g § g & ° =8
g &8 & &8 8 g & 8 ,
£ Ao
6’8o
Ed
6L
zZ00°L
Z€09
290°S
60t
(24

61T
81T
1120
U] Y

2 a2 g 3 8 8
T84 3 g ¢g8g 5337
T Nm s s o o e
Te

e

000~

9000~

°

T

&

T

2

09

2
ao

ot

as

_images/Basis_functions.png
10°

10°

1071

1073

Normalised Polynomial
Polynomial

Difference Polynomial
Log Polynomial

Log Log Polynomial
Legendre
Exponential

_images/Gradients_fits.png
248

240

—250

Y

— T+ S(v) + Noise

— Tis moaer

W s 10 0 1
v [MHz]

_images/README.png
2500

2000

> 1500

oy

1000

500

0.05

0.00

~0.05

—— Data
—— Recovered Noise
— Noise

60

80

100

120 140

_images/a2e8ef7ead9e08d76a5679bd4d370ef033b45fe8.png
10

05

0.0

-1.0

— Data
—— MSFfit, m=2
— PSFfit,m=3

40 45 50

nav.xhtml

 Table of Contents

 		
 Welcome to the maxsmooth documentation!

 		
 Introduction

 		
 Introduction

 		
 Installation

 		
 Derivative Constrained Functions and maxsmooth

 		
 Example Fit

 		
 Licence and Citation

 		
 Contributing

 		
 Documentation

 		
 Requirements

 		
 Basin-hopping/Nelder-Mead Code

 		
 maxsmooth Theory and Algorithm

 		
 Well Defined Problems and Discrete Sign Space Searches

 		
 The {\chi^2} Distribution

 		
 The maxsmooth Sign Navigating Algorithm

 		
 Ill Defined Problems and their Identification

 		
 maxsmooth Example Codes

 		
 Simple Example code

 		
 Turning Points and Inflection Points

 		
 New Basis Example

 		
 Best Basis Example

 		
 {\chi^2} Distribution Example

 		
 Parameter Plotter Example

 		
 maxsmooth Functions

 		
 smooth()

 		
 best_basis()

 		
 chidist_plotter()

 		
 parameter_plotter()

 		
 Change Log

 		
 Unrealeased

 		
 Version 1.1.0

 		
 Version 1.2.0

_images/chi_distribution.png
107

108

10°

10¢

10°

10?

100 150
sign Combination

200 250

_images/combined_chi.png
107
109
10°
10*
103

103

102

o

T T T T
50 100 150 200

Sign Combination

T

250

_images/chi_dist_theory.png
107
108
10°
= ot J20t
202
10
200
10 ass
170

100 200
Sign Combination

_images/d9f859c937af6f4ef13cff1816644edf4e576113.png
0.04

0.02

0.00

-0.02

-0.04

~0.06

60

80

100

120

140

_images/inflection_point_example.png
10

05

-1.0

10

15

2.0

2.5

35

4.0

45

5.0

_images/inflection_point_example_res.png
0.06

0.04

0.02

0.00

-0.02

-0.04

—— Recovered Noise
—— Actual Noise

10

15

20 25 30 35 40 45 50
X

_images/routine.png
107

109

103

102

=)
Tested Signs
Path
Rejected Sign
Limits On Exp.)
3
PR,

T T f T T
50 100 150 200 250
Sign Combination

_images/simple_program_msf_residuals.png
0.04

0.02

0.00

-0.02

-0.04

60

80

100

120

140

_images/simple_program_csf_residuals.png
0.04

0.02

0.00

-0.02

-0.04

~0.06

60

80

100

120

140

_images/simple_program_data.png
2500

2000

> 1500

1000

500

60 80 100 120 140

_images/turning_point_example_res.png
0.06

0.04

0.02

0.00

-0.02

-0.04

—— Recovered Noise

—— Actual Noise

-100 -75 -50 -25 00 25

50 75

10.0

_static/ajax-loader.gif

_images/turning_point_example.png
100

80

60

40

20

-100 -75 =50 -25 00 25 50 75 100

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

